
Building a
Livestream Shopping App
with React Native

1

MAY 2023
©NTWRK 2023
THENTWRK.COM

Overview

2

May 2023
©NTWRK 2023
THENTWRK.COM

What is NTWRK?
How are we using React Native?
What were some learnings?

What is NTWRK?
3

MAY 2023
©NTWRK 2023
THENTWRK.COM

NTWRK is an online marketplace where
businesses build shopping-oriented
communities around product categories such
as Sneakers, Fashion, Designer Toys, Art,
Music, and Trading Cards.

Through the NTWRK app, we’re providing
sellers the tools to grow their brands with a
unique set of social commerce functionality.

Native Mobile First

Started as a shopping-only Swift app in
2018 then pivoted to React Native in
mid-2019 to target both iOS and Android.

Expanded to include entire feature set for
businesses to set up and sell products live
in 2020.

Why React Native?

We’re a start-up. We need to move fast.

Time To Market
 – ~4-8 devs work on mobile.
 – Feature set + release cadence is identical for iOS, Android.

Leveraging Existing Experience + Ecosystem
 – Devs primarily come from a TypeScript, React background.
 – Robust and growing ecosystem of open source in RN community.

Live Shopping +
React Native

7

MAY 2023
©NTWRK 2023
THENTWRK.COM

Live Show UI

Video

Reactions

Product Catalog

Current Auction

Chat

Notifications

Features

Agora WebRTC
(3rd party)

WebSocket

GraphQL, Pusher

GraphQL, Pusher

Stream (3rd party)

Pusher (3rd party)

Live Show UI Implementation

react-native-agora

@apollo/client

stream-chat-react-native

pusher-js

Deep Dive: Product Catalog
Packages + Routing

Packages

@react-navigation/stack
 – app-wide routing + screen components
 – used for nested navigation inside ‘product catalog’ bottom sheet.

@gorhom/bottom-sheet
 – renders the ‘bottom sheet’ with excellent interaction handling.

react-native-tab-view
 – manages the ‘buy now’ + ‘auction’ tabbed list views.

jotai
 – state management (passing values, refs, etc. around)

Package Nesting in Component Tree
react-navigation > bottom-sheet > react-navigation > react-native-tab-view

The entire show is rendered in a component
that can go into an in-app PiP mode. This
makes it visible above all other screens.

This screen component just sets some
state, captures route params, etc.

Package Nesting in Component Tree
react-navigation > bottom-sheet > react-navigation > react-native-tab-view

bottom-sheet supports react-navigation
but only with an independent nav container!

Everything works great! But…
How do we deep link into a screen nested in the bottom-sheet?
How do we route back out of one of these nested screens?

How to deeplink from the root?
Requires a small trick because of the ‘independent’ navigation container.
Independent = fully disconnected from parent containers

Step 1:
Capture the route params from the show screen once it’s mounted.

How to deeplink from the root?

Step 2:
– If there are show params, display the catalog.
– On first render of the catalog, use those params to manually navigate to a specific screen.

What about routing back out?
Independent navigator makes this tricky. Have to capture a reference to
the parent nav container + bottom sheet to route back out.

Rendered in a lot of places! Needs to
handle both dismissing the sheet (if
embedded inside one) or just routing
directly to the ‘buy now’ screen.

Capture the sheet so that it can be
closed when navigating outside of
nested nav container.

What about routing back out?

Create a ‘wrapped’ navigate function
that dismisses the sheet then calls the
original navigate function.

Return wrapped navigate function if it
exists. Otherwise return the current
scope’s navigate function.

Capture the parent scope’s navigate
function.

Key Takeaways
15

MAY 2023
©NTWRK 2023
THENTWRK.COM

Always Monitor Performance

– Third-parties have rarely been the sole cause
 of perf issues.
– Self-inflicted through excessive re-rendering,
 poor usage of state / contexts.

Keep the FPS monitor on!
Use Flipper + Profiler to debug.

Performance Monitoring With Flipper

Performance Debugging

One callback triggering a state update
all the way at the top of the component
tree

= 3-5 JS FPS dip!

The Ecosystem Is Comprehensive & Rapidly Evolves

Every product feature we’ve needed to build has at least one package (if not multiple
packages) addressing one of our problems.

– Almost never have to go outside the JS codebase!
– Cross-library compatibility is quite good!
 (think reanimated, rn gesture handler, navigation, tab-view, bottom sheet)

– Teams need to keep up with rapid pace of open source development.
 (i.e. going from react-navigation v3 => v5 => v6; keeping up with every RN release)

Significant improvement in native look and feel since 0.59!

Thank you!
19

MAY 2023
©NTWRK 2023
THENTWRK.COM

